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A THEORY OF CONDUCTIVITY OF COLD-WORKED COPPER

. By Rolf Lendauer
SUMMARY -

The increase in the reslstivity of copper under cold-working is
calculated. The lncrease is assumed to be caused by dislocations sur-
rounded by a long-range electrostatic field that scatters the conduc-
tion electrons. The amount of scattering is found by the method of
deformation potentials of Bardeen and Shockley. The scattering is
present in addition to the normal thermal scattering and is regerded
as a perturbation in the Boltzmann equation. This perturbation is used
to f£ind the incremental resistance per dislocation. From this calcu-
lated increment in resistance and the known increase of resistivity of
heavily cold-worked copper, the number of dislocations in the cold-
worked copper is found to be in agreement with the number estimgted on

the basis of stored-energy measurements.
]

INTRODUCTTON

In the vicinity of an edge-type dislocation,'a metal is strained.
A diletion of the lattice is assoclated with this strain; therefore the
density of electrons veries in the vicinity of the dislocation and the
width of the filled portion of the conduction band must also vary. In
equilibrium, however, the top of the filled portion of the conduction
bend must be at the same level everyvwhere; so -the bottom of the ~onduc-
tion band mst accommodate the variation. This variation scat .
electrons and is taken into account in the ensuing calculation.

. The matrix elements for this scattering are calculated by the
method of deformation potentials of Bardeen and Shockley (reference 1).
Once these matrix elements have been obtained, the rest of the calcu-
lation follows the method of Mackenzie and Sondheimer (reference 2),
which treats the scattering due to- dislocations as a small perturbation
in the Boltzmenn equation. This treatment gives the change of resist-
ance gt high temperatures, where the increment is only a few percent

of the normal thermal resistance. An.eéZlier calculation by Koehler
(reference 3) deals with the resistance/ f cold-worked copper at abso-

lute zero. /
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The physical motivation for this calculation and the results have
been published in reference 4, whereas the detalled procedure is given
in this report.

ANALYSIS

In order to discuss electronic motion in the vicinity of an edge
dislocetion, a coordinate system must be defined. The z-axis is taken
to be the dislocation axis and the distence of a point from this axls
is denoted by ry. The angle of elevation above the slip plene is

measured by 6. The dislocation will be teken to be positive, so that

there will be an extra plane of atoms above the slip plane at 8 = :x/ 2.
The slip direction 6 = 0 is considered parallel to the x-axis. (Sym-
bols are listed in sppendix A.)

The density of lons varies near the dislocation. If n, is the
density .of ions in the unstrained metal and if An is the increment in.
the number of ions per unit volume then, as shown in eppendix B,

8 (1-D- 2v°) sin 0
no 21( (1_1’2) l‘-l?

(1)

vhere a 1s the slip distance, and Vv 1s Poisson's ratio. The width
of the f£illed portion of the conduction band occupied by n electrons
with effective mess m* is

| Eg = a—m'i(aﬁ)Z/ (2)

Not only n, but also m* is a function of position in the mneighborhood-

of the dislocation.

When two different metals are brought into conta.ct, an electro-
static field is set up so that their Fermi levels are brought together.
The bottom levels of the two conduction bands are then gt different
energies, the difference being equal to the difference in the width of
the conduction bands. In & dislocation, regions of the metal subject
to different strains are in contact with each other;.in the same way as
in the case of different metals it can then be expected that the Fermi
levels are brought together in the vicinity of the dislocation, and that
the veriaetion in band width gives rise to a variation in the energy of
‘the lower band edge.

The method of deformation potentials (reference 1) describes the
most genersl method by which electronic motion in deformed crystals may
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be treated. ILet VYo be the wave function at the lower band edge. Let
8U(x) be the deviation of the lower band edge from its normsl position.

Then the_’wa.ve function for an electron with energy E 1s given by
-
A(r) Yo(r) vhere A satisfies

2

-—13*—: v+ su(z) A(F) = EA(T) : (3)
2m*(r)
°r 2
& . ‘
[ﬁ? # 2 (E.suﬂ A -0 (@)

vhere mg* is the effective mess in the undistorted lattice. Since
ﬂro(;) is taken to be the same for all wave functions in the band, it

need not be considered and only the perturbation in A(r) due to the
dislocation must be evaluated.

Now, for an electron near the top of the filled portion of the
conduction basnd, E-8U is the width of the conduction band given by
equation (2); hence

m : h2 3n 2/3
—x (B-8U) = mo*(g;) (5)

Setting n = ng + An glves, to the first order in An

2/3 2/3 |
m—;(E-au>=——{z];§*-Z-j—°)/ “12 )/() (8)

The second term on the right-hand side represents a perturbation due to
the elastic distortion of the metal. Using equation (1) gives the per-

turbation es
2 [hz (i_g)z/s:li (1-v-2v%) sin 6 (1)
5 | emg*\ax 2t (1- 1?) Ty

& (1-v-20%) sin 0

(1-%) T

or

3EBO (8)
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vhere Ep,0 1s the width of the filled porbion of the conduction band
in the unstrained metal. Therefore A(r) is to be ,determined from the
equation

2 P, o
Zmo (l-‘U ) t ,
The unperturbed equation is i
72 2 . .
and its solution is Ay(T) = A :5' where
s4%l2 _ -
2my% ’

. -».
and AO(?) is the factor that modulates ﬂro(r), for an electron at the

top of the conduction band,in the undeformed metal. The probability of
transitions to states of the type

must now be calculated. The new state has the same energy as the ini-~
tial state '

ﬁzr’, |2
2mg
bt represents the scattered electron traveling in a new direction.

From thls scattering probaibili‘ty, the increase in resistance can be
found by the method of reference 2.

Eso

Note that it i1s not necessary to know m*(r), but that 1t is only
the varlation of n(r) that matters; m*(r) mneed ’not be known.

Equation (9) is the wave eguation that a free particle of mass m,¥*,
incldent energy EB,O; and charge -g obeys, 1f scattered by an elec-

trostatic potential

2224
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v = _8 (1-v-2v2) sin 6
e
3ng (l-U?) Ty .

This 1s the potential of a line dipole located along the dislocation
axis.

CALCULATTON OF MATRIX FLEMENTS

The perturbing potential in equation (9) bas the form

V=g sin @ (10)
g
where
2 a (1L-v-21F)
B==o =24 (11)
3 2x (1_§) EB,O

This potential is assumed to exist in a rectangular box of length L
along the dislocation axls and of area d2 measured in a cross section
perpendicular to the length I of the box. The unperturbed wave func-
tions are.normalized for this box, are selected to satisfy perlodic
boundary conditions, and are of the form

Ao(;) = _}«ﬁ ﬁ'; (12)
, .

vhere V = 14°” and is the volume of the box.

The matrix element of interest is

- = -
L [ oo o R
v Ty
which vanishes unless k, =k;'. Let kt: kt and rt represent the

components of k, k', and r, respectively, that are perpendicular to
the dislocabtion axlis. After integration slong the z-axis, éxpres-
sion (13) becomes (if k, = k',)

1
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> > -»>
i(kt"' t)“rB sin 6

da 14
5, d (1)

1

< |e

a® .
vwhere dA is an element of surface of § plene perpendicular to the dis-

location axis. Let the magnitude of (kt-kb') be denoted by K and

the angle it makes with the slip plane by 6. Then the matrix element
in question becomes

ikry cos (6-6,)
—13 fe B Bi’; ® an (15)
a UA t :
Setting 6-65 = a glves
ikr; cos o :
iz e O £ sin (at6y) A (18)
a“dJy Tt
where sin (at8y) can be expanded as
sin a cos 6, + cos a sin 8y (a7)

The first term of expression (17) is odd in a. Because the exponential
is even in «, this contribution to the integral vanishes. The

remaining integrand glves

sin 6 Jirrg cos o

> _ cos o da dry (18)
a A

B

The integration over ry from ry; =0 to ry = o« can be performed by
assuming that Kk bhas a smell positive imaginary part and then letting
this imaginary part approach zero. This procedurée glves for the matrix
element

> > B sin 6
M(k,k') = =2 .L do (19)
2 ik
d )
2n B sin 6

P70 (20)
ik a2 ,

2224



y2az2

NACA TN 2439 ; 7

Let 0.' and Oy be the angles that k' and ¥ (finel end
initial wave vectors, respectively) mske with the slip plane. Then

(e +et>
~ - 2,2 CO8

2 6.0
d4kt sinz(t,z t)

Contour of
constant energy

-
Now consider this tramsition in ki space, as shown in this fig-

ure. The plane represents all the states with a given value of k,.
The curve represents a contour of constant energy. As is usual in cal-

.culations of thls type, the only transitions that are important are

those that almost conserve enmergy. The electron is assumed in an ini-
tial stete specified by ki.  The quentity needed is the transition

probability to the set of states in the element dS df. The reasoning
used here follows that given in reference 5.

If Ey' 1is the energy of the final state and E, 1s the energy

of the initial state, the probebility that the electron will be in
state k' after time t is

e e e e e e =
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)2 2(1- cog pt) | (22)
D .

|§k' |2 - ‘niz m(k, k"

vhere P = (B '-E.)/M. Now the number of states per unit aree of this
2

two-dimensional ‘];b space is d 59 and the probability of Tinding the
43t

2
electron in 4dS d¢ is therefore -q‘—é- Iak'lz as dﬁ. The totel proba-
4 ,
bility for finding the electron in d4dS is
. &2 5 ‘ )
as 7 Jexct)© at . (23)

The metrix element M(E,‘E') cen be.assumed constant over the range of
dt The only important contributions to the integrand come from small
values of £ for vhich

P = %Péi ) | (24)

= =)

where £ is taken to be zero on the contour of constent energy shown

in the preceding figure. The quantity actuelly needed is the
probability of transition per unit time, This differentiation

then gives
2 (et”’et
2 cos \——s—

> 2% B 7/ as
P(k,k') ds = && «© 25
(k) %, 2.2 0, ' -0\ 4B (25)
ktd c 2
o8 . df,

2

Now this probebility of transition is superposed on the transition
probabllity arising from the thermal vibrations of the lettice. In the
normel metal, in the anneeled state, and in the presence of an electric
Pield, there is a deviation g(k) from the Fermi distribution. This
deviation is limited by the thermal scattering, the amount of the devia-
tion determining the amount of the current. Cold working changes the
conductivity of nonporous and isotropically conducting metals by only a
few percent. 1In the presence of the field, the dislocation, and the
thermal scattering, the deviation from the Fermi distribution 1s of the

form g(k) - gl(f), vhere g; is a small perturbation and g(¥) is
the deviation that exists without the dislocation. Let fOC]E) stand

Tor the probability that the state associated with wave vector T is
occupied according to the Fermi distribution:

232
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£o(k) = (26)

[Ea:) -¢] jur

Let £(E) stend for the actual distribution, £(X) = £,(k) + g(k) - gl(k)

The rate &t which f(k) changes because of an electric field in the
X direction is .

F.o=x& . (27)

vhere F 1is the field, ang where the surfaces of constant energy are
assumed to be spheres in k space. Furthermore, the conduction process
in the annealed metel wlll be assumed describeble by a relaxation time
time T (references 2 and 5) so that

> an ﬁ@' _afokx
a(k) = 2= 2 —ﬂ—w—akt-gf T (28)

In equilibrium, 3¢/3 = 0. The vate of change of f due to the
field as given by equation (27), must therefore be balanced by the scat-
tering. The rate of scattering due to the thermal vibra.tions is given
by

or (£-f0) 81 ‘
X Gp. g2 @
and the rate of scattering due to the d-isloca.tion ‘:Ls
i af(k) f (i*) - f(kil P(k,k') ds® (30)
at
or
k) _ | [eo (k) - fo(iE)] p(k,X') as*
N f (k) - g(E)] p(kk') as® (31)
- ,
-f;l(-i')-gl(iﬂ P(E:‘];,) as!
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In each integral occurring in equation (31) the integration is over the
circle defined by |k;'|=[ky|, which lies in the plane k,’ = k.

The Pirst imtegral vanishes because fo(E) = £4(k'); the last

integral is neglected. Both gl(fc) and P(E,ﬁ') are proportional to
the perturbation represented by the dislocation. The lagt integral 1s
therefore of second order in the perburbation. The tobal rate of

change 1is

a‘:E.O kI qF €1 et gl '
R Rt "f s - sa)e @) st - 0 (32)

According to equation (28) the first two terms cancel, The remsining
equation gives

> rs -
g =-T| |8(k*) - g(k)]P(k,k') as* (33)
where g 1s given by equation (28).

Substituting from egquatlon (28), the solution for g; beccmes
2 Ofg gF >, >
81@) =T ey (cos 6y - cos 64') P(k',k) ds* (34)

»> >
The value of P(k',k) d3* is given by equaticn (25)., Substituting
this valus in equation (34) gives

2 e.t+e.b'
. 3. op 0 cos
g (k) = 12 Q% 2np” 1 1 i(cos 6y - cos Bi*) ast
akt hnn ktz a2 oF, 1n2 Oy-0y
Ok, ' 8 5

(35)

61 10
c 032( ‘bz' ‘b)
def

Now d8' = ki, d94'. Therefore

> of, 2 \
=12 201 9F 27p° 1 - v
81( ) = 1% S 5 S (cos 6y - cos 84')
ky 2 4 By 1-0y
3 e (]

(36)

From this change in electron distribution, the change in the current
denslity can be determined:

14444
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AJ =ﬂ]qvx _2;:.%13 aTge (37)

1 OB
Vo = = — CO8 O 38
X ﬁakt + ( )
{
and furthermors
a1 = k? sin 7 dy 46, dk | (39)

where 7 1is the angle that the ¥ veotor mekes with the dislocation
axigs. Hence

~

T
Ad = 81( ) q aE cos 6y k2 sin y dy d6y dk (40)

In order to evaluate AJ, the expression given for gl(k) in equa-
tion (36) must be inserted in equation (40). This substitution gives

014041
. (cos 61 - cos 64') cos2 LML
AJ:E_iz. 2 g2 g dkdydatdet'l:zl‘_afo sin 7 cos 6 i :
2 #3 42 kg EEE b B:l'.nz 6-[;;91; r)
(41)
Nov ki =k sin 7. Furthermore,
Ofp dfy ky df
0 0 -0
-gk; a—];— -E- = dk: sin ¥ (4:2)
Hence
. o5 !
2 . ag, (cos 6y .~ cos 641) cosz( tz t’)
AJ:%%TZ%F dk dy 46y @ 'k g sin 7 cos 6y
28’ g et'et')
8in? >

(43)
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Only near the top of the filled portion of the band is df,/dk appreciably
different from zero; hence 1t can be consldered a negatlve Dirac B
function because all other terms in the integrand vary slowly with k.

The integration over ¥, fram ¥y =0 to 7t = 7, and the integration

over k, from k =0 to k =o, give

. [
0464\
(cos 6y = cos 641) cosz( 5 )

gin? (etget ')
(44)

The particular value of k a.ssooia.ted with the Fermi level 1s denoted
by ke. In appendix C the value of the integral is shown to be =2,

Therefore

2 2 % ka 48y 46y " cos 6y

B

4
A = - =
ﬂz

a 2
A = -4 L 2 BS e, (45)
w2
and for the change in conductivity (a.bsolute value 1is given)
Jao]= Ad A _eL a2 L kp (46)
= .

Now 1f there are N dislocations in the area a2

2
ol = 4 L 12 g2 kI
| o] ST
Q€ 202 . (+7)
~a L
«113‘r P™ Y

where 4 1is the number of dislocations per square centimeter,

Subgtitubing the value of B given in equation (11) gives

2 2
e %
0| eBl1-v-212| 4% 2. 2 5
L 921— P (48)

The percentage cha.nge in conductivity is glvenh by |Ao| /o. This is
" also the percentage oha.nge in resistivity, if the change 1s small,. The
valus of o is ng®7/mg* where my* is the effective mass in the

unpsrturbed lattlce, Hence

21202\ ‘
Jﬁ’_l J——Ql—ég—(ll—‘_’—‘%v—)-i%%,ozkfmo*{ (£9)

y2e2
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Equation (50) gives the ‘change in resistivity for.current flow in
the sllp direction,

Tf the ocurremt flow 1s along bhe y-axls, that is, 6 = x/2, a
glightly different computation applies, In equa’cions (27), (28),
(32), k, must be replaced by k;, This substibutlon gives 1nstead of
equation (34),

=¥, of | -
g1 (k) = 12 BEbQ %1'1 (sin 6y - sin 6.') P(¥+,E) as¢

end an equivelent replacemenmt in all subsequent equations. Equation (38)
must be replaced by

y = — akt
Instead of equation (44), the following relation is then obtained:

6;.46.
(sin oy - sin 6;") GOBZM
5,0
2075778
(2%

and in appendix C the value of the integral is shown to be 3n2, which
gives

AJ:--‘.*--‘-‘-—TEEka a0, a6y sin o
I O T s

2 .
ad
Ao _ Ap 1-v-2v) T g 2 %
o 0 "3 :tz(lva ﬁ3EB’O 2 Mo n
In the z-direction, along the diglocatlon axis, ,the conductivity
remains unchanged by the disloocatlon,
RESULTS
In & material in which dislocations occur with equal probability
at all orientations, the Increase In resistance is the average incresse

for the x, y, and 3z directions (reference 2). Hemce for an
1sotropically cold-worked metal

2\2
Ap _ 16 a2(1-v-2v2\° 1 2 4
o 27 ,tZ 1-p2 %3 EBJO kf "o n

I the values given for copper in reference 4 are substituted
\ 80 - 4,0x10"14 ¥

2
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Setting thlg result equal to the 2-percent change usually observed in
copper glves

N = 5x101 /en?

It is estimated (reference 6) that heavily cold-worked copper has

ex101t dislocatlons per square cenbtlimeter. This estlimate was based
on stored-energy measurements. The agreement is excellent, indeed
considerably better than the assumptions involved warrant,

The possibility that somé of the stored ensrgy may be in the form
of screw dislocations has been neglected. In a simple cubic crystal,
these dislocations are not accompanied by volume dilations and probably
cauge less scattering than edge-type dislocations., Furthermore, it
should be taken inbto account that dislocatlons in a face-~centsred cubic
metal, such as copper, occur in the form of half-dislocations,

Lewis Flight Propulsion Laboratory,
National Advisory Committee for Aeromautios,
Cleveland, Ohio,

-

2

¥ee2
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APPENDIX A

SIMBOLS

The following symbols are used 1in this report:

INE
fag|2
a

d

£
£()
g(x)
g(®) - 81(?)

h
4

ad

wd

solution of effective mass equation in undeformed crystal
probability that trensition from ¥ +to k' has ocourred
glip dlstance

width of box (along z-axis) used in quantizing electron
gtates

energy of electron 1n statlonary state 1n perturbed
periocdic potential

width of £11led portion of conduction bani, function of
position in vicinity of dislocation

,width of filled portion of conductlon band in unstrained

metal
energles of fimal and Initlal state, respectively
electric field producing current flow

probability that state T is oocupied according to Ferml
distridbution .

probability that state * is occupled in the presence of
electric fleld and dislocation

deviation from Fermi distributlion in normal undistorted
lattice, In the presence of an electric field

deviation from Fermi distribution in the presence of dls~
location and electric fiseld

Planck's constant -
h/2x
decrement in currenmt due to dilslocation

wave vechtor of elsctron In Initial state
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wave vector of electron in final state

megnitude of T et top of filled pofbion of conduction
band,

components of respective vectors that are perpendilocular
%o dislocatlon axls :

components of respec‘bife vectors along dislocatlion axls

length of box (along z-axis) used in quanbizing electron
gtates '

effpotive olectronic mess in unstrained httice

effective electronic mass, funotion of position in vicinity
of dislocation )

mebrix element for transition from state -1% to state E‘
due to perturbatlon by dislocation

nummber of dlslocatlons orossing area a2

nmmber of dislocations per square centimeter

Dy + An

mmber of lons per unit volume In unstralned metal

change in mmber of lons per unit volume due to straln,
a functlon of position In vicinity of dlslocatlion

probebility per unit time that a transition from E to
k* occurs '

Ty '-By/
magnitude of electronic change

position vector defining location with respect to an origin
on dislocation axis ,

oomponentt of ¥ +that 1s perpentioular to dislocation axis

verisble of integration in Tk space, dS 1s along &
contour of constant energy

abgolute temperature

time

2224
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8U(T)

LA

Tz, Vy

X,Y,2

at

Ap

AC

17

devlation of lower band edge from level at which 1t 1s
when far away from dislocation

1/2(6y + 64')

1/2(6; - 64')

electrostatic potential whose scattering effect 1is

equivalent to 'dislocation
perturbing potential dus to dislocation in wave equation
expectation value of electron velocity components

rectangular coordinates with g-axis along disloca.tion and
x=axls in slip direction

8 - 8,

2 a_ (1-p-20°)

32t (3 p2) 8,0

angle that E vector makes with dis;l.ocation axis
Ferml level

angle of elevation above slip plane, measured from dis-
locatlon axls

angle Eb"-];t,' makes with elip plane

angles that El:. '
x-exls

and K, respectively, make with the
megnitude of Eb‘Eb'
rectangle of area a2 perpendicular to dislocation axis

Poissonts ratio

variable of integration in -]Eb space; d§ 1s perpendicular
to a conbour of constgnt energy

resistivity of normal metal
change in resistivity caused by severe cold working
conductivity of normal metal

change in conductivity caused by severs cold working
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relaxation time for conduction process

volume elemenmt in ¥ space
wave functlon for electron at bottom of conduction band
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APPENDIX B

CHANGE OF ION DENSITY NEAR A DISLOCATION

The gtress dlstribution surrounding an edge-tyye dislocation hes
been glven in reference 7 as

P11 = - D(8in 36 + 3 sin e)/zr

Dyy = D(sin 36 - sin 0)/2r

P12 = D{cos 36 + cos 9)/2r

Dsz = - D(4v sin 6)/2r (81)
. \ P13 = D3 =0

where D = Ga/2x(1-vV), G being the shear modulus, and v 1s Poisson's
ratio, Now the gtrain tensor Si,j has diagonal berms glven by

1 )
where p 1s the pressure, or the trace of the stress tensor, and € 1is
the unit tensor. The dilation is Z;, Sii and is therefore given by

1 .
8y1 =={p ~ 3 2
z 11 ZG(p 3 l+D) (83)
1 L
Substituting from equation (Bl) in equation (B3) gives
Z Srs = - & (1-p-212) sin @
T m ) T (B4)

The ohange in ionic density An/n 1is the negative of equation (B4) and
1s given by -

n z_g_jl-v-zva) gin 0
2% (1.p2) r

:s|l>
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EVALUATION OF INTHGRAIS -

NACA TN 2439

The integral
" 046, "
L (cos 6 - cos 6;') cosz(t L
. ] N .
a6, a6,' cos 6, = (c1)
- J - ’ gin2 ’cz t
is to be evaluated., Let
%‘- (65 + 65Y) = u (c2)
and ‘
% (6 - 6.Y) = v (c3)
The integral glwven then becomes ,
Tt U=~V
. 2
2 du clv[c:cns2 (u+v) - cos (wv) cos (u_v)]_c_cls_z__g
=0 \Ju=V-1t sln” v
v=0 V=N+V /
2 : cos? u
+2 du dv |cos® (u+v) - cos (u+v) cos (u=-v) —
gin” v
V-1t JU=-7~V
(c4)

The factor 2 .represents ths Jacobian of the transformation, The range
of Integration is the sguare shc:wn in the following flgure:
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N\
V= -1
9t=-1t
u= -7
/.

The first integral ranges over the dashed triangle; the second :Lntegré.l
over the remalining portion of the square, The Lerms in brackets can
also be wrltten

[2sinzusinzv—Zcosucosvainusinv] ’ (cs)

The first term of expression (QS) is even in v; the second 1s odd;

cos? u/ein® v 1s even in v. Therefore the first term of expres-
sion (C5) produces contributions of like sign and equal magnitude in
the two integrals of equation (C4). The second term of expression (C5)
_ produces contributions that cancel. Therefore expression (C4) reduces to

V=3 U=g=-v

8 sin? u cos? u du dv (ce) -
V=0 Ju=v-x

The Integral over u is a standard integral, listed in tables of
integration, This integratlion leaves

4
(32-‘ sin 4v 4+ 2~ ZY)dv

v=0
kL8

'sin4v+21rv-v2[

ol

(c7)
0 .

= 208 - %2 = %2

which 1s the value of (C1),
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The integral

(et-;et)
a0, 6, sin 6, (stn 6; - sin et') —— (c8)
=04
gind
- ()

is also to be evaluated, The transformation given by equations (C2)
and (C3) must be used again and gives

£l U=~V

: 2
2 du dv E.’Ln2 (v+v) - sin (u+v) sin (u—va -@-12—1-1
- sin®“ v
v=0, ju=v-«
0 V=RV
2 cos? u
2 du dv [sin” (uw+v) - sin (u+v) sin (u-v ——
gln~ v
V=N \J U=~V
(c9)
The terms in the brackets can be written
(2 cos? u sin? v + 2 sin u cos v cos u sin v) (c10)
" As in expression (Cl), only the term even In v contributes, leaving
% u=-v
8 cos® u au av. (c11)

- V=0 JUu=v-o

After integration over wu, the inmtegral 1s

bty
(6:( - 6v - 4 Binzv-%sinégv)dv
T=0
B .
= 677 - 3v2 = 62% - 3% = Bx° (c12)
0

which 1s the value of expression (C8),
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